The CHIR Algorithm for Feed Forward Networks with Binary Weights
نویسنده
چکیده
A new learning algorithm, Learning by Choice of Internal Represetations (CHIR), was recently introduced. Whereas many algorithms reduce the learning process to minimizing a cost function over the weights, our method treats the internal representations as the fundamental entities to be determined. The algorithm applies a search procedure in the space of internal representations, and a cooperative adaptation of the weights (e.g. by using the perceptron learning rule). Since the introduction of its basic, single output version, the CHIR algorithm was generalized to train any feed forward network of binary neurons. Here we present the generalised version of the CHIR algorithm, and further demonstrate its versatility by describing how it can be modified in order to train networks with binary (±1) weights. Preliminary tests of this binary version on the random teacher problem are also reported.
منابع مشابه
Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
متن کاملArtificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...
متن کاملArtificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...
متن کاملUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989